

MBV-003-0494007 Seat No. _____

B. Sc. / M. Sc. (Applied Physics) (Sem. IV) (CBCS) Examination

April / May - 2018

Electrodynamics & Plasma Physics: Paper - XVI (New Course)

Faculty Code: 003

Subject Code: 0494007

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory

(2) Numbers in the right margin indicate marks

1 Attempt any seven short questions:

14

- (1) Define PLASMA state of matter.
- (2) List the applications of Plasma
- (3) What are Plasma Oscillations? Draw a well labelled diagram of Plasma Oscillations.
- (4) State Coulomb's law. Write its mathematical expression.
- (5) Define electric field intensity. Write the expression for point charge.
- (6) Define an electric dipole? Write its importance.
- (7) Define dielectric constant and strength.
- (8) Write down the Poisson's and Laplace's equations.
- (9) Draw a well labelled diagram of Debye Effect in Plasma.
- (10) What is invariance of magnetic moment μ in Plasma.

		(1)	Define Faraday's law in electrostatics. Also, derive relationship between electric field intensity and electric flux density.	
		(2)	Drive an expression of Maxwell's Equation: Ampere's Circuit Law.	
		(3)	Write a brief note on Coulomb's law with its applications and limitations.	
		(4)	What is continuity equation? Derive it and also, KCL from it.	
	(B)	Wri	te answer of any one:	4
		(1)	Write a short note on electric scalar potential.	
		(2)	Write a brief note on energy density in electrostatic field.	
3	(A)	Write answers of any two :		
		(1)	Derive Maxwell's first equation: Conservative nature of electrostatic field.	
		(2)	Write a note on Magnetic flux density.	
		(3)	Write a note on Magnetic boundary conditions.	
		(4)	State and explain Biot Sawart's Law.	
	(B)	Wri	te answer of any one :	4
		(1)	Write mathematical expression of Poynting's theorem and explain each term with necessary figures.	
		(2)	Write a brief note on Polarization in dielectric.	
4	(A)	Wri	te answers of any two :	10
		(1)	Derive an expression for the potential φ in Debye sphere and hence describe what is significance of Debye Length in Plasma.	
MB	V-003	-0494	1007] 2 [Cont	d

10

2 (A) Write answers of any two:

- (2) Explain various methods for the production of Plasma.
- (3) Explain why plasma can not occur naturally on earth. Give the list of natural and artificial occurrence of Plasma.
- (4) Describe various properties of Plasma.
- (B) Write answer of any one:

4

- (1) Compute λ_D and N_D for the following
 - (a) a glow discharge with $n = 10^{16} m^{-3} \& kT_e = 2eV$
 - (b) a θ pinch with $n = 10^{23} m^{-3} \& kT_e = 800 \ eV$
- (2) Discuss various applications of Plasma.
- 5 (A) Write answers of any two:

10

- (1) What is magnetic mirror effect in Plasma? Comment on diamagnetic nature of Plasma.
- (2) Describe the effect of curved magnetic field on the motion of charged particle plasma.
- (3) Obtain a fluid equation for plasma and compare it with ordinary fluid equation.
- (4) Derive an expression for the frequency of plasma oscillations.
- (B) Write answer of any one:

4

- (1) Describe the effect of uniform B on the motion of charged particle in Plasma.
- (2) Explain the effect of GRAD B field applied perpendicular to B in plasma.